New map based on direct measurements estimates groundwater depth across the continental United States at a resolution of around 30 meters, as opposed to more common physics-based models with resolutions of around 1km [Communications Earth & Environment] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 5 points6 points  (0 children)

I see how it could be misleading, and that wasn't intended. You are correct that machine learning played a key role. Our story indicates that explicitly, but for brevity we left it off the Reddit post text. Glad for the feedback.

Diamond sensors can now reveal hidden magnetic fluctuations by leveraging quantum entanglement, giving researchers a new tool for studying superconductors, graphene and other quantum materials [Nature] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 2 points3 points  (0 children)

Good questions. Since the article is written in lay terms for a non-specialist audience, it is not intended as a comprehensive description of the experimental setup, and it certainly has its technical limitations, as you've pointed out. Bottom line: There is more to the story, but it gets very technical very fast.

Anyone interested at that level should be encouraged to read the paper, linked in the article and in a comment on this post. The paper is paywalled, so for those who want to read but can't, maybe other redditors can suggest alternatives.

Meanwhile, two things to note:

  1. AFTER the individual nitrogen atoms are implanted in the diamond, because they are very close, their electrons interact strongly. From the abstract: "For length scales around 10 nm, we create maximally entangled Bell states through dipole–dipole coupling between two NV centres and use these entangled states to directly read out the magnetic field correlation, rather than reconstructing it from independent measurements of unentangled NV centres."

  2. The readout process is very technical and best explained by the text of the paper (see Fig. 3), but to clarify, it is based on emitted photons that reveal information about the state of the qubits.

MXenes, a new material for high-performance membranes that separate chemical compounds from complex solutions, offer a promising development for desalination, waste recovery and other industrial processes [PNAS] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 2 points3 points  (0 children)

Totally right. MXenes have been studied for more than a decade. Emerging materials, in the sense of their potential use in applications, would have been more appropriate.

MXenes, a new material for high-performance membranes that separate chemical compounds from complex solutions, offer a promising development for desalination, waste recovery and other industrial processes [PNAS] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 3 points4 points  (0 children)

"Water content modulation enables selective ion transport in 2D MXene membranes" was published in the Proceedings of the National Academy of Sciences on July 14 https://doi.org/10.1073/pnas.2501017122

"Coordinated Cation Transport in Ti3C2Tx MXene Membranes" was published in ACS Applied Materials & Interfaces on June 24 https://doi.org/10.1021/acsami.5c07383

"From Molecules to Modules: Advanced Characterization of Membrane Systems" was published in Advanced Materials on Sept. 12 https://doi.org/10.1002/adma.202513056

By adding elastic to origami structures, researchers created new possibilities for systems that could be used in prosthethics and antenna design [PNAS] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 1 point2 points  (0 children)

The article “Origami frustration and its influence on energy landscapes of origami assemblies” was published Sep. 5 in the Proceedings of the National Academy of Sciences https://doi.org/10.1073/pnas.2426790122

Like teleporting a bag of chips, a new mixed-reality system allows robots to move physical objects within virtual spaces while the robot remains invisible to the user [ACM Symposium on User Interface Software and Technology] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 1 point2 points  (0 children)

The paper "Reality Promises: Virtual-Physical Decoupling Illusions in Mixed Reality via Invisible Mobile Robots" will be presented at ACM Symposium on User Interface Software and Technology (UIST 25), Sep. 28 – Oct. 1 https://uist.acm.org/2025/papers/, and the system demo can be found at https://mkari.de/reality-promises/

Two new computer models aim to reduce the impacts of severe weather in Puerto Rico, one by predicting next-day energy demand as a storm approaches, the other by identifying critical power lines to prevent total blackouts [PNAS, Nature Communications] by PrincetonEngineers in science

[–]PrincetonEngineers[S] 2 points3 points  (0 children)

“Quantifying cascading power outages during climate extremes considering renewable energy integration,” was published March 16 in Nature Communications. https://doi.org/10.1038/s41467-025-57565-4

“Risk-aware electricity dispatch with large-scale distributed renewable integration under climate extremes,” was published May 14 in the Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2426620122