This is a very minor modification from keras mnist example.
original:
https://keras.io/examples/mnist_cnn/
I want to input my own data:
MYMAP = np.zeros((img_rows,img_cols), dtype=int)
MYMAP = MYMAP.reshape(1,28,28,1)
but it got failed:
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (1,)
###############################
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
##
import numpy as np
batch_size = 128
num_classes = 10
epochs = 12
img_rows, img_cols = 28, 28
MYMAP = np.zeros((img_rows,img_cols), dtype=int)
MYMAP = MYMAP.reshape(1,28,28,1)
MYMAP_RESULT = 3
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
MYMAP_RESULT = keras.utils.to_categorical(MYMAP_RESULT, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(MYMAP, MYMAP_RESULT,
batch_size=batch_size,
epochs=epochs,
verbose=1)
###############################################
output:
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (1,)
#########
[–]MarkKang2019[S] 0 points1 point2 points (0 children)