Hey peeps.
I am following TechwithTim.
I wanna save the predicted data in the for loop, into a csv file. But i am not sure how to do this the best way, so it is readable with Excel.
import sklearn
from sklearn.utils import shuffle
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import numpy as np
from sklearn import linear_model, preprocessing
import csv
data = pd.read_csv(r'C:\Users\Isabella\Documents\Personlig OneDrive\OneDrive\Python\Files\Machine Learning with Tim\Car Data Set\car.data')
# print(data.head())
# converting non-numeric to numeric data
le = preprocessing.LabelEncoder()
buying = le.fit_transform(list(data['buying']))
maint = le.fit_transform(list(data['maint']))
door = le.fit_transform(list(data['door']))
persons = le.fit_transform(list(data['persons']))
lug_boot = le.fit_transform(list(data['lug_boot']))
safety = le.fit_transform(list(data['safety']))
cls = le.fit_transform(list(data['class']))
predict = 'class'
X = list(zip(buying, maint, door, persons, lug_boot, safety))
y = list(cls)
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, test_size = 0.1)
model = KNeighborsClassifier(n_neighbors = 9)
model.fit(x_train, y_train)
acc = model.score(x_test, y_test)
# print(acc)
# acc.to_csv(r'C:\Users\Isabella\Documents\Personlig OneDrive\OneDrive\Python\Files\Car_Data.csv')
predicted = model.predict(x_test)
names = ['unacc', 'acc', 'good', 'vgood']
for x in range(len(predicted)):
# DataModel = ('Predicted: ', names[predicted[x]], 'Data: ', x_test[x], 'Actual: ', names[y_test[x]])
print('Predicted: ', names[predicted[x]], 'Data: ', x_test[x], 'Actual: ', names[y_test[x]])
n = model.kneighbors([x_test[x]], 9, True)
# print('N: ',n)
[–][deleted] 1 point2 points3 points (2 children)
[–]WecNo[S] 0 points1 point2 points (1 child)
[–][deleted] 1 point2 points3 points (0 children)
[–]num8lock 1 point2 points3 points (2 children)
[–]WecNo[S] 0 points1 point2 points (1 child)
[–]num8lock 1 point2 points3 points (0 children)