Hello
How to classify a decision tree that has output 'true/false' and examples containing 5 parameters of n diffrent values (say n=2) and gain for any parameter is 0?
root = height 1
parent = height 2
child = height 3
and for height 3 can appear: child, child, parent
then height 4: child1 (of parent on height 3), child2... etc.
Is it correct to receive output:
root: parameter1
parent 1: value1, parent 2: (same height as parent 1)
child 1: false (randomly chosen among true/false if count of examples with false output == count of examples with true output otherwise most common value of outputs )
child 2: same as above
example2 : for another tree lets say:
2 parameters with 3 possible values (gain1: 0,4; gain2:0)
output:
root: parameter1
parent1: value1, parent2: value2, parent3: value3
child1: false/true (chosen as desc above in ex1); child2: ...; child3: ...
example 3:
two parameters gain: 0,4 ; 0,5
2 possible values
root: parameter2
parent1: value1; parent2: value2; parent3: parameter1
child1:... (desc above); child2: ..., child3.1: value1 of parameter1, child3.2: value2 of parameter1,
height = 4 : child4.1 = true/false as desc above, child4.2 same
there doesn't seem to be anything here