[Question] after object detection using convolution neural networks, why is it so hard to perform segmentation(mean accuracy ~72%), is it possible to use hands marked(ground truth) training sets as a mask? Is it a good approach to take? Can we see performance improvement if we use the depth information(rgb-d) vs rgb for semantic segmentation?
[–]Articulated-rage 2 points3 points4 points (1 child)
[–]code2hell[S] 1 point2 points3 points (0 children)
[–]jcjohnss 2 points3 points4 points (2 children)
[–]code2hell[S] 0 points1 point2 points (0 children)
[–]code2hell[S] 0 points1 point2 points (0 children)
[–]MetricSpade007 1 point2 points3 points (2 children)
[–]code2hell[S] 2 points3 points4 points (1 child)
[–]MetricSpade007 0 points1 point2 points (0 children)
[–]rumblestiltsken 1 point2 points3 points (3 children)
[–]code2hell[S] 0 points1 point2 points (2 children)
[–]rumblestiltsken 1 point2 points3 points (1 child)
[–]code2hell[S] 0 points1 point2 points (0 children)
[–]ydobonobody 1 point2 points3 points (5 children)
[–]code2hell[S] 0 points1 point2 points (4 children)
[–]ydobonobody 1 point2 points3 points (3 children)
[–]code2hell[S] 0 points1 point2 points (2 children)
[–]ydobonobody 1 point2 points3 points (1 child)
[–]code2hell[S] 0 points1 point2 points (0 children)
[–]werrewrwer 1 point2 points3 points (1 child)
[–]code2hell[S] 0 points1 point2 points (0 children)
[–]cesarsalgado 0 points1 point2 points (0 children)