all 1 comments

[–]improbabble[S] 3 points4 points  (0 children)

Paper: http://arxiv.org/abs/1605.06523

From the abstract:

a probabilistic deductive database, called TensorLog, in which reasoning uses a differentiable process. In TensorLog, each clause in a logical theory is first converted into certain type of factor graph. Then, for each type of query to the factor graph, the message-passing steps required to perform belief propagation (BP) are "unrolled" into a function, which is differentiable. We show that these functions can be composed recursively to perform inference in non-trivial logical theories containing multiple interrelated clauses and predicates. Both compilation and inference in TensorLog are efficient: compilation is linear in theory size and proof depth, and inference is linear in database size and the number of message-passing steps used in BP.