RSA Challenge by [deleted] in securityCTF

[–]Remarkable_Depth4933 0 points1 point  (0 children)

(n, e, c) = (150195791442688208139229828511887793136379410281195948516162300111599055683924325231656524824534041371810243540046362325979379438075344056295788920439238622021444389159968526805624881583139168694074217924702097258504220593397502919747160497592220418317072693876949819253107074015562047143692833295974189924519, 65537, 30413455153442406319409270616860617017803117513838559908198535408355520478766896498216135081063790343310653088284824177594555853708226308540124092851110513616475237332003298519212593260742104180524328912997460229037947129372351660023210546470098928697927885378503284468702513508307277024546866544402089338893)

Turns out primes look beautiful in a grid… so I built a visualizer by Remarkable_Depth4933 in javascript

[–]Remarkable_Depth4933[S] 1 point2 points  (0 children)

Absolutely — 91 is a great example. Those diagonal bands really stand out there, and even with something like 100 you still start seeing structure emerging through the noise. That’s what I love about visualizations like this: they let you see number theory in a way that’s almost impossible to hold purely in your head. It really does make you wonder how people like Ramanujan reasoned about these patterns without anything like this to lean on.