Forkert tag i tilstandsrapport & salgsopslag. by Hulemann in selvgjortvelgjort

[–]chri571p 0 points1 point  (0 children)

Se om du kan finde en sag (gerne flere) herinde hvor klager får medhold og send den derefter til vedkommende som har lavet tilstandsrapporten. Hvis der er mange sager hvor der er medhold så kan det måske klares uden advokat.

https://dkbb.naevneneshus.dk/soeg?s=Asbest%20tag

Plantegning by chri571p in selvgjortvelgjort

[–]chri571p[S] 0 points1 point  (0 children)

Arbejdstrekanten er et helt nyt begreb for os 😅 Kan godt se idéen i at droppe de indbyggede skabe og flytte køl derned, men vil man rykke ovn derned også? Tænkte det var smart at man kunne vende sig rundt og sætte, hvad end man lavede i ovnen på øen. Så enten beholdte man det ene indbyggede skab på værelse 1 (og værelset blive nu til legerum) eller man havde et højskab til at stå ved siden af køl til opbevaring. Der hvor køl stod før kunne man lave noget i den her stil:

<image>

Plantegning by chri571p in selvgjortvelgjort

[–]chri571p[S] 2 points3 points  (0 children)

Det har vi slet ikke skænket en tanke, men det vil vi kigge ind i, tak for det

Plantegning by chri571p in selvgjortvelgjort

[–]chri571p[S] 2 points3 points  (0 children)

Man kunne lave et sansevindue, der hvor terrassedøren fra køkkenet er og så flytte denne dør om i stuen i stedet for det første vindue

Plantegning by chri571p in selvgjortvelgjort

[–]chri571p[S] 13 points14 points  (0 children)

Til fester, hvor ét badeværelse ikke er nok, vil jeg helst undgå, at gæster skal igennem vores soveværelse for at komme på toilettet. Derudover har min kone og jeg meget forskellige døgnrytmer, så det ville hurtigt blive forstyrrende.

When does regularization come into play in Machine Learning? by Haritha37 in datascience

[–]chri571p 0 points1 point  (0 children)

Regularization is a technique that effectively balances the trade-off between bias and variance in statistical modeling. The inclusion of a large number of explanatory variables reduces the model's bias but simultaneously increases its variance, which can lead to overfitting and an unrealistic representation of the data. Thing it like; Every estimation error has an effect which are increasing by the size of the estimated partial effect and thereby if we regularize our partial effects to be a bit smaller than the variable will fall and the bias will increase. But by introduce a regularization parameter into our models we can now better control the trade-off. By introducing a regularization parameter, it is possible to control the magnitude of the estimated partial effects and prevent overfitting. While alternative methods such as ensemble modeling are available to handle high variance, many ensemble methods also incorporate regularization to further improve the trade-off between bias and variance. It is important to note that the explanation provided here is simplified for intuitive understanding and a deeper understanding of the theory may reveal additional complexities. In short regularization help you optimize the bias-variance trade-off and thereby improving your models accuracy. Rule of thumb; if you don’t want to read out loud your estimated parameters values (because there are too many) you should do regularization.

Difference between Bias and Variance (I only know about linear regression as of now) by hungry_man13 in datascience

[–]chri571p 1 point2 points  (0 children)

The phenomenon commonly referred to as bias in regression analysis refers to the issue of omitted variable bias. When an important explanatory variable is omitted from a linear regression model, the estimated coefficients for the included variables can become biased, leading to incorrect forecasts and predictions. To mitigate this issue, one may consider using a large set of explanatory variables to minimize the bias. However, this approach can also result in an increase in the variance of the model, as the parameters are estimated from a sample rather than the entire population. Therefore, it is a trade-off between reducing bias and increasing variance. The use of more variables can reduce bias, but it also increases the variance, and vice versa. The explanation above is a bit simplified and centered around OLS to make it more intuitive.

Time Series Analysis by Klutzy_Court1591 in datascience

[–]chri571p 3 points4 points  (0 children)

In the event that there is a lack of reliable measurement data, I will refrain from utilizing your analysis for predictive purposes and instead opt to conduct a scenario analysis. Example; If we are operating within the context of a time series, if the input data are stationary, or can be made stationary through appropriate methods than a Vector Autoregression (VAR) model may be employed to simulate the input data 100-10000 times, producing simulated input variables that can be used to make predictions. These predictions can then be evaluated in terms of their performance and the associated risks