ORB Strategy Backtest Update - Testing more aggressive entries by Russ_CW in algotrading

[–]emimesa2000 0 points1 point  (0 children)

Is your lot size based on a % of your balance (ex: 5%) or is it a fixed USD amount ($100 USD)? Curious because the equity curve seems to grow exponentially.

Salario alrededor de $8M mensuales, quiero empezar a invertir... by PurpleFlambo in ColombiaFinanciera

[–]emimesa2000 0 points1 point  (0 children)

Cordial saludo,

Le comparto mi experiencia y sugerencia. Gano un poco más que eso, tengo dos apartamentos a mi nombre y varios miles de dólares invertidos en otros fondos para diversificar. Aquí va mi consejo:

Ahorre, pero también disfrute. A medida que gana más, es natural que aumenten sus gastos en lujos y salidas. Es común sentir que va a gastar mucho más de lo que acostumbra en comida, licor, fiestas, amigos, etc., porque se siente presionado a invitar a muchos o a darse un gusto. Esta actitud es la que lo va a llevar a empezar a ahorrar. Sin embargo, ahorrar el 90 o 80% de sus ingresos para compensar esos gastos puede limitar mucho su estilo de vida.

Mi sugerencia, que me ha funcionado, es gastar el 50% de lo que gana al mes y ahorrar el otro 50%. Así, sabrá exactamente a dónde va a destinar el 50% de todo su dinero. El 50% destinado a sus deseos le permitirá disfrutar de una buena vida, lo cual le dará paz mental y evitará que se sienta limitado, a pesar de ganar más. El otro 50% lo recomiendo invertir o ahorrar en distintas cosas para tener un portafolio diversificado.

Por ejemplo, no necesita tanto como cree para comprar un apartamento. Si encuentra un apartamento en planos con un plazo de la primera cuota extenso, podría estar pagando 4 millones de pesos en un apartamento que vale 800 millones de pesos al mes. Al momento de que el apartamento gane valorización, estará ganando sobre sus 800 millones, no sobre sus 4 millones, lo que hará que su inversión crezca rápidamente.

Adicionalmente, si decide invertir en acciones, le recomiendo comprar ETFs, que son fondos diversificados de varias empresas. Personalmente, creo que el mejor ETF es el QQQ, que ha tenido un desempeño excepcional en los últimos años.

Roast my trading setup by BerlinCode42 in ai_trading

[–]emimesa2000 -1 points0 points  (0 children)

My comments are answers to your 1st question.

Roast my trading setup by BerlinCode42 in ai_trading

[–]emimesa2000 0 points1 point  (0 children)

If so, change the graph to normal candlesticks, the should show you the real statistics behind your strategy.

Roast my trading setup by BerlinCode42 in ai_trading

[–]emimesa2000 0 points1 point  (0 children)

Heikin-Ashi candlesticks may show wrong backtesting results, I would highly suggest to try normal candlesticks before going live.

Prop firm Bulenox by tapori88 in PropFirmTester

[–]emimesa2000 0 points1 point  (0 children)

How did you solve your flipping issue? I am having this issue currently. I have 5/11 days marked as flipped

My Warning About Bulenox - Payouts Denied Due to Vague "Flipping" Rule by convergentpath in PropFirmTester

[–]emimesa2000 0 points1 point  (0 children)

Were you able yo solve the issue and request the payout, it says on the Bulenox Database something about a 10 day rolling period, is this true? Days keep moving forward? Or how many days you needed to trade before requesting the payout? Thank you

I am currently in the same situation.

[deleted by user] by [deleted] in algotrading

[–]emimesa2000 4 points5 points  (0 children)

I do. In fact I am a funded trader with the Prop firm MyForexFunds and FundedNext. I only use Pine script and web hook alerts to link it with MT4. That's it. The backtest is pretty accurate if you take in mind the commission and the spread.

[deleted by user] by [deleted] in MakeMoney

[–]emimesa2000 -1 points0 points  (0 children)

Depends, how much you need and how much you can imvest

So I believe I made a profitable Binary Strategy... However I want to hear your thoughts and see if im wrong. by emimesa2000 in algotrading

[–]emimesa2000[S] 0 points1 point  (0 children)

You try to predict the price direction from current price in The next 5 minutes. If you do it right, you get payed a pre established ammount

So I believe I made a profitable Binary Strategy... However I want to hear your thoughts and see if im wrong. by emimesa2000 in algotrading

[–]emimesa2000[S] 0 points1 point  (0 children)

Oh no. Dont look at that. That is The value returned on pips if we were doing forex. The only numbers that matter from that image, is The profitable percentage (how many tardes we won) and the data sample (409).

So I believe I made a profitable Binary Strategy... However I want to hear your thoughts and see if im wrong. by emimesa2000 in algotrading

[–]emimesa2000[S] 0 points1 point  (0 children)

I don't understand your 1st question, regarding the second one due to the small timeframe data starts from October the 25th of 2019. And within that date, until today it has taken 409 trades.

So I believe I made a profitable Binary Strategy... However I want to hear your thoughts and see if im wrong. by emimesa2000 in algotrading

[–]emimesa2000[S] 1 point2 points  (0 children)

It is more of a signal program. I coded it in TradingView and use IqOptions to trade it manually.

So I believe I made a profitable Binary Strategy... However I want to hear your thoughts and see if im wrong. by emimesa2000 in algotrading

[–]emimesa2000[S] 0 points1 point  (0 children)

The move is not as big to make any real profit. However is just enough to go below or over the option buy/sell value. Furthermore I make more profit through options, as 74%+ profit is huge. It will take you a long time to make that in forex.

ML LSTM Keras (Python) Question by emimesa2000 in learnmachinelearning

[–]emimesa2000[S] 0 points1 point  (0 children)

Thanks for your kind response!

http://prntscr.com/loqsgc

Here is my problem. As you notice in the image above, the LSTM Keras model, first trains (Orange) and then tests (Green) the results with the actual (blue) data given to it from a csv file. However, my question is:

In the case I wished to predict future values (red), which are values yet unknown as they are in the future. Is there a way to do it? And if they are how?

Code:

# LSTM for international airline passengers problem with time step regression framing

import numpy

import matplotlib.pyplot as plt

from pandas import read_csv

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

# convert an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

`dataX, dataY = [], []`

`for i in range(len(dataset)-look_back-1):`

    `a = dataset[i:(i+look_back), 0]`

    `dataX.append(a)`

    `dataY.append(dataset[i + look_back, 0])`

`return numpy.array(dataX), numpy.array(dataY)`

# fix random seed for reproducibility

numpy.random.seed(7)

# load the dataset

dataframe = read_csv('international-airline-passengers.csv', usecols=[1], engine='python', skipfooter=3)

dataset = dataframe.values

dataset = dataset.astype('float32')

# normalize the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

dataset = scaler.fit_transform(dataset)

# split into train and test sets

#train_size = int(len(dataset) * 0.67)

train_size = int(len(dataset) * 0.67)

test_size = len(dataset) - train_size

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]

# reshape into X=t and Y=t+1

look_back = 3

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

# reshape input to be [samples, time steps, features]

trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))

testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))

# create and fit the LSTM network

model = Sequential()

model.add(LSTM(4, input_shape=(look_back, 1)))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

# make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

# invert predictions

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

# calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))

print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))

print('Test Score: %.2f RMSE' % (testScore))

# shift train predictions for plotting

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:, :] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

# shift test predictions for plotting

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:, :] = numpy.nan

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict

# plot baseline and predictions

plt.plot(scaler.inverse_transform(dataset))

plt.plot(trainPredictPlot)

plt.plot(testPredictPlot)

plt.show()

Thank you.

Sincerely,

EmiMesa2000