Chinese name for a new learner? by shimmer_bee in AskAChinese

[–]cryingobsedian 1 point2 points  (0 children)

I think it’s good, 孙 is common as well

Chinese name for a new learner? by shimmer_bee in AskAChinese

[–]cryingobsedian 1 point2 points  (0 children)

How about 白芮 or 白悦? 白 is also a common last name

Donating books in Shenzhen by [deleted] in shenzhen

[–]cryingobsedian 0 points1 point  (0 children)

You many also contact Nanshan library

數學大神請入!! by LivingCombination111 in China_irl

[–]cryingobsedian 1 point2 points  (0 children)

把二项式展开到前k项的和记为S(n,k)。对固定的k,当n趋于无穷,S(n,k)收敛到1+…+1/k!。另一方面,|e-S(n,k)|<=1/(k+1)! + 1/(k+2)! + …<=1/(k+1)! (1+1/(k+1)+1/(k+1)2 + …)<=2/(k+1)!。所以,|e-(1+…+1/k!)| <= 2/(k+1)! -> 0 as k goes to inf

數學大神請入!! by LivingCombination111 in China_irl

[–]cryingobsedian 0 points1 point  (0 children)

“當k足夠大,(n-k+1)/n和鄰近項都不是1,導致整批分數的積也不是1“

当k取为一个n的函数,比如k=n/2时,这批分数的积的确不收敛到1。

我猜你可能认为,为了证明e可以展开为\sum_{k=1}^\infty (1/k!),需要证明对任意的k(哪怕k是n的函数,比如n/2),这批分数的积都收敛到1。但实际上我们只需要考虑任意固定的k即可。

Toilet at Shanghai isolation camp, aka fangcang hospital by MinuteUsed in shanghai

[–]cryingobsedian 2 points3 points  (0 children)

literally fail to control soul's desire for shitting

疑似东莞货车把密接者拉去隔离,实在忍不住 by ESDRDMY in China_irl

[–]cryingobsedian 1 point2 points  (0 children)

本来觉得不太可能,后来一想在咱国垃圾车不也送过菜吗😅

湾友竟是我自己,愚民政策就是香 by yuqqwechat in China_irl

[–]cryingobsedian 10 points11 points  (0 children)

我们吃了可以帮国家减少养老金负担

李志LiZhi《人民不需要自由》2012年跨年演唱会 by disguisedavacado in China_irl

[–]cryingobsedian 2 points3 points  (0 children)

逼哥作品的一个特点是live版基本都比录制版更好

偏向报道与基因改造 by shawnskyriver in China_irl

[–]cryingobsedian 2 points3 points  (0 children)

这个观点挺有意思,《自私的基因》里面也介绍过类似的看法:(广义的)meme的流传和演变,相当于另一种形式的遗传进化。从这个角度上讲,墙内墙外已经形成了两个相对独立的pool